M.SC. ENTRANCE QUESTION

SUBJECT: PHYSICS

Q1. A unit vector perpendicular to the plane containing $\vec{A}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\vec{B}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$ is
(A) $\frac{1}{\sqrt{26}}(-\hat{\imath}+3 \hat{\jmath}-4 \hat{k})$
(B) $\frac{1}{\sqrt{19}}(-\hat{\imath}+3 \hat{\jmath}-3 \hat{k})$
(C) $\frac{1}{\sqrt{35}}(-\hat{\imath}+5 \hat{\jmath}-3 \hat{k})$
(D) $\frac{1}{\sqrt{35}}(-\hat{\imath}-5 \hat{\jmath}-3 \hat{k})$

Ans: D

Q2. The real part of an analytic function is $u(x, y)=x^{2}-y^{2}$. The imaginary part of the function is then
(A) $x^{2}-y^{2}-2 x y$
(B) $x^{2}+y^{2}$
(C) $x^{2}+y^{2}+x y$
(D) $2 x y$

Ans: D

Q3. The function $e^{\cos x}$ is Taylor expanded about $x=0$. The coefficient of x^{2} is
(A) $-\frac{1}{2}$
(B) $-\frac{e}{2}$
(C) $\frac{e}{2}$
(D) Zero

Ans: B

Q4. Let M be a 2×2 matrix. Its trace is 6 and its determinant has value 8 . Its eigen values are
(A) 2 and 4
(B) 3 and 3
(C) 2 and 6
(D) -2 and -3

Ans: A

Q5. The solution $y(x)$ of the differential equation $y \frac{d y}{d x}+3 x=0, y(1)=0$ is described by
(A) an ellipse
(B) a circle
(C) a parabola
(D) a straight line

Ans: A
Q6.The radial component of acceleration in plane polar coordinate is given by
(A) $\frac{d^{2} r}{d t^{2}}$
(B) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}$
(C) $\frac{d^{2} r}{d t^{2}}+r\left(\frac{d \theta}{d t}\right)^{2}$
(D) $2 \frac{d \theta}{d t} \frac{d \theta}{d t}+\frac{d^{2} \theta}{d t^{2}}$

Ans: B
Q7. Let (x, y) denote the coordinates in a rectangular cartesian coordinate system C.
Let $\left(x^{\prime}, y^{\prime}\right)$ denote the coordinates in another coordinate system C^{\prime} defined by

$$
\begin{gathered}
x^{\prime}=2 x+3 y \\
y^{\prime}=-3 x+4 y
\end{gathered}
$$

The area element in C^{\prime} is
(A) $d x^{\prime} d y^{\prime}$
(B) $12 d x^{\prime} d y^{\prime}$
(C) $\frac{1}{17} d x^{\prime} d y^{\prime}$
(D) $x^{\prime} d x^{\prime} d y^{\prime}$

Ans: C
Q8. The function $f(x)=\frac{8 x}{x^{2}+9}$ is continuous everywhere except
(A) $x=0$
(B) $x= \pm 9$
(C) $x= \pm 9 i$
(D) $x= \pm 3 i$

Ans: D

Q9. If $\phi(x, y, z)$ is a scalar function which satisfies the Laplace equation, the gradient of ϕ is
(A) Solenoidal and irrotational
(B)Solenoidal but not irrotational
(C) Irrotational but not solenoidal and
(D)Neither solenoidal nor irrotational

Ans: A
Q10.The eigen values of $\left(\begin{array}{ccc}3 & i & 0 \\ -i & 3 & 0 \\ 0 & 0 & 6\end{array}\right)$ are
(A) 2,4 and 6
(B) $2 i, 4 i$ and 6
(C) $2 i, 4$ and 8
(D) 0,4 and 8

Ans: A
Q11. If the motion of a particle is described by $x=5 \cos (8 \pi t), y=5 \sin (8 \pi t)$ and $z=5 t$ then the trajectory of the particle is
(A) Circular
(B) Elliptical
(C) Helical
(D) Spiral

Ans: C

Q12. Given $z=x+i y$, the contour integration $\oint_{C} \frac{d z}{z}$ is equal to (where C is any anticlockwise contour going around the origin
(A) $-\pi i$
(B) $2 \pi i$
(C) πi
(D) $\pi / 2$

Ans: B
Q13.An integral is defined to be $I=\int_{0}^{\infty} \frac{\sin x}{x} d x$, then I is equal to
(A) $-\pi / \cos \sqrt{2}$
(B) $\pi / 2$
(C) $-\cos \sqrt{2} / \pi$
(D) $2 / \pi$

Ans: B
Q14.The solution to the nonlinear differential equation $\frac{d f}{d x}+\alpha f^{2}=0$ with boundary condition $f(0)=1$ and α is a constant is given by
(A) $\cos \alpha x$
(B) $\sin \alpha x / \alpha x$
(C) $(\alpha x+1)^{-1}$
(D) $(\alpha x+1)^{-2}$

Ans: C
Q15. Let $f(x, y)=x^{3}-2 y^{3}$. The curve along which $\nabla^{2} f=0$ is
(A) $x=\sqrt{2} y$
(B) $x=2 y$
(C) $x=\sqrt{6} y$
(D) $x=-y / 2$

Ans: B

Q16. A curve is given by $\vec{r}(t)=t \hat{\imath}+t^{2} \hat{\jmath}+t^{3} \hat{k}$. The unit vector of the tangent to the curve at $t=1$ is
(A) $\frac{\hat{\imath}+\hat{\jmath}+\hat{k}}{\sqrt{3}}$
(B) $\frac{\hat{\imath}+\hat{\jmath}+2 \hat{k}}{\sqrt{6}}$
(C) $\frac{\hat{\imath}+2 \hat{\jmath}+2 \hat{k}}{3}$
(D) $\frac{\hat{\imath}+2 \hat{\jmath}+3 \hat{k}}{\sqrt{14}}$

Ans: D
Q17.In a heat engine based on Carnot engine, heat is added to the working subsance at constant
(A) Entropy
(B) Pressure
(C) Temperature
(D) Volume
(I)
(II)
(III)

$\xrightarrow[\mathrm{S}]{\stackrel{T}{\mathrm{~T}}}$
$\xrightarrow[\mathrm{S}]{\stackrel{\text { T }}{\text { T }} \text { ? }}$
$\xrightarrow[\mathrm{S}]{\stackrel{T}{4}}$

Q18. Which one of the figures correctly represents the $T-S$ diagram of a Carnot engine?
(A) II
(B) III
(C) I
(D) IV

Ans: B
Q19. Two boxes A and B contain equal number of molecules of the same gas. if the volumes are V_{A} and V_{B} and λ_{A} and λ_{B} denote respective mean free paths, then
(A) $\lambda_{A}=\lambda_{B}$
(B) $\frac{\lambda_{A}}{V_{A}}=\frac{\lambda_{B}}{V_{B}}$
(C) $\frac{\lambda_{A}}{V_{A}{ }^{1 / 3}}=\frac{\lambda_{B}}{V_{B}{ }^{1 / 3}}$
(D) $\lambda_{A} V_{A}=\lambda_{B} V_{B}$

Ans: B
Q20. The equation of state for one mole of a non - ideal gas is given by $P V=A\left(1+\frac{B}{V}\right)$, where the coefficient A and B are temperature dependent. if the volume changes from V_{1} to V_{2} in an isothermal process, the work done by the gas is
(A) $A B\left(\frac{1}{V_{1}}-\frac{1}{V_{2}}\right)$
(B) $A B \ln \left(\frac{V_{2}}{V_{1}}\right)$
(C) $A \ln \left(\frac{V_{2}}{V_{1}}\right)+A B\left(\frac{1}{V_{1}}-\frac{1}{V_{2}}\right)$
(D) $A \ln \left(\frac{V_{2}-V_{1}}{V_{1}}\right)+B$

Ans: C
Q21.The rms velocity of oxygen molecule is given by at some temperature T. The molecules of another gas have the same rms velocity at temperature $T / 16$. The second gas is
(A) Hydrogen
(B) Helium
(C) Nitrogen
(D) Neon

Ans: A

Q22. Isothermal compressibility is given by
(A) $\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$
(B) $\frac{1}{P}\left(\frac{\partial P}{\partial V}\right)_{T}$
(C) $-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$
(D) $-\frac{1}{P}\left(\frac{\partial P}{\partial V}\right)_{T}$

Ans: C
Q23.A blackbody at a temperature of 6000 K emits radiation whose intensity spectrum peaks at 600 nm .
If the temperature is reduced to 300 K , the spectrum will peak at
(A) 12 nm
(B) $120 \mu \mathrm{~m}$
(C) 120 nm
(D) $12 \mu m$

Ans: D

Q24. An ideal monoatomic gas, initially at $T=20^{\circ} \mathrm{C}$ expands adiabatically from a volume V_{0} to $5 V_{0}$. Then the final temperature is
(A) $-20^{\circ} \mathrm{C}$
(B) $-33^{\circ} \mathrm{C}$
(C) $-173^{\circ} \mathrm{C}$
(D) $-113^{\circ} \mathrm{C}$

Ans: C

Q25. During free expansion of an ideal gas under adiabatic condition, the internal energy of the gas
(A)Decreases
(B) Initially decreases and then increases
(C) Increases
(D) Remains constant

Ans: D

Q26. In the given phase diagram for a pure substance, region $I, I I, I I I, I V$ respectively represents
(A) Vapour, gas, solid, liquid
(B) Gas, vapor, liquid, solid
(C) Gas, liquid, vapor, solid
(D) Vapor, gas, liquid, solid

Ans: B

Q27. A system undergoes a thermodynamic transformation from state S_{1} to S_{2} via two different paths 1 and 2 . The heat absorbed and work done along path 1 are 50 J and 30 J respectively. If the heat absorbed along path 2 is $30 J$, the work done along path 2 is
(A) Zero
(B) 10 J
(C) 20 J
(D) 30 J

Ans: B
Q28.The root mean square(rms)speeds of Hydrogen atoms at $500 \mathrm{~K}, V_{H}$, and Helium atoms at $2000 \mathrm{~K}, V_{H e}$, are related as
(A) $V_{H}>V_{H e}$
(B) $V_{H}<V_{H e}$
(C) $V_{H}=V_{H e}$
(D) $V_{H} \gg V_{H e}$

Ans: C
Q29.For the molecules of an ideal gas the ratio of the most probable speed to average speed to root mean square velocity is given by
(A) $\sqrt{2}: \sqrt{\pi / 8}: \sqrt{3}$
(B) $\sqrt{3}: \sqrt{\pi / 8}: \sqrt{2}$
(C) $\sqrt{3}: \sqrt{8 / \pi}: \sqrt{2}$
(D) $\sqrt{2}: \sqrt{8 / \pi}: \sqrt{3}$

Ans: D
Q30. For a mole of ideal gas at $T=35^{\circ} \mathrm{C}$, what is the work done for an isothermal expansion from a volume V_{0} to $10 V_{0}$?
(A) $6 \times 10^{3} \mathrm{~J}$
(B) $3 \times 10^{3} \mathrm{~J}$
(C) $10^{3} \mathrm{~J}$
(D) $10^{4} \mathrm{~J}$

Ans: A

Q31.Which one of the following is an impossible magnetic field ?
(A) $\vec{B}=3 x^{2} z^{2} \hat{x}-2 x z^{3} \hat{Z}$
(B) $\vec{B}=-2 x y \hat{x}+y z^{2} \hat{y}+\left(2 y z-\frac{z^{3}}{3}\right) \hat{z}$
(C) $\vec{B}=(x z+4 y) \hat{x}-y x^{3} \hat{y}+\left(x^{3} z-\frac{z^{2}}{2}\right) \hat{z}$
(D) $\vec{B}=-6 x z \hat{x}+3 y z^{2} \hat{y}$

Ans: D
Q32.The expression for the magnetic field that induces the electric field
$\vec{E}=K(y z \hat{\imath}+3 z \hat{\jmath}+4 y \hat{k}) \cos (\omega t)$ is
(A) $-\frac{K}{\omega}(\hat{\imath}+y \hat{\jmath}-z \hat{k}) \sin (\omega t)$
(B) $-\frac{K}{\omega}(\hat{\imath}+y \hat{\jmath}+z \hat{k}) \sin (\omega t)$
(C) $-\frac{K}{\omega}(\hat{\imath}-y \hat{\jmath}+z \hat{k}) \sin (\omega t)$
(D) $-\frac{K}{\omega}(\hat{\imath}+y \hat{\jmath}+z \hat{k}) \sin (\omega t)$

Ans: A

Q33. For an electromagnetic wave travelling in free space, given by $\vec{E}=E_{m} \sin (\omega t-\beta z) \hat{y}$, the magnetic field will be given by
(A) $\vec{B}=-\frac{E_{m} \beta}{\omega} \sin (\omega t-\beta z) \hat{x}$
(B) $-\frac{E_{m} \beta}{\omega} \cos (\omega t-\beta z) \hat{z}$
(C) $\frac{E_{m} \beta}{\omega} \sin (\omega t-\beta z) \hat{y}$
(D) None of the above

Ans: A

Q34.The electric field of an electromagnetic field is given by
$\vec{E}=(2 \hat{k}-3 \hat{\jmath}) \times 10^{-3} \sin \left[10^{7}(x+2 y+3 z-\beta t)\right]$. The value of β is (c is the speed of light)
(A) $\sqrt{14} c$
(B) $\sqrt{12} c$
(C) $\sqrt{10} c$
(D) $\sqrt{7} c$

Ans: A

Q35. Three point charges each carrying a charge q are placed on the vertices of an equilateral triangle of side L. The electrostatic potential energy of the configuration is
(A) $\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{L}$
(B) $\frac{2}{4 \pi \epsilon_{0}} \frac{q^{2}}{L}$
(C) $\frac{3}{4 \pi \epsilon_{0}} \frac{q^{2}}{L}$
(D) $\frac{1}{\pi \epsilon_{0}} \frac{q^{2}}{L}$

Ans: C

Q36. For a quantum particle confined inside a cubic box of side L, the grund state energy is given by E_{0}. The energy of the first excited state is
(A) $2 E_{0}$
(B) $\sqrt{2} E_{0}$
(C) $3 E_{0}$
(D) $6 E_{0}$

Ans: A
Q37.The maximum number of intensity minima that can be observed in the Fraunhofer diffraction pattern of a single slit (width $10 \mu \mathrm{~m}$) illuminated by a laser beam(wavelength $0.630 \mu \mathrm{~m}$ will be
(A) 4
(B) 7
(C) 12
(D) 14

Ans: A
Q38.Light of wavelength λ (in free space) propagates through a dispersive medium with refractive index $n(\lambda)=1.5+0.6 \lambda$.The group velocity of a wave travelling inside this medium in units of $10^{8} \mathrm{~m} / \mathrm{s}$ is
(A) 1.5
(B) 2.0
(C) 3.0
(D) 4.0

Ans: B

Q39.Arrange the following telescopes, where D is the telescope diameter and λ is the wavelength, in order of decreasing resolving power.
I. $D=100 \mathrm{~m}, \lambda=21 \mathrm{~cm}$
II. $D=2 \mathrm{~m}, \lambda=500 \mathrm{~mm}$
III. $D=1 \mathrm{~m}, \quad \lambda=100 \mathrm{~nm}$
IV. $D=2 \mathrm{~m}, \lambda=10 \mathrm{~mm}$
(A) III, II, IV, I
(B) II, III, I, IV
(C) IV, III, II, I
(D) III, II, I, IV

Ans: B

Q40.A linearly polarised light falls on a quarter wave plate and the emerging light is found to be elliptically polarised. the angle between the fast axis of the quarter wave plate and the plane of polarisation , can be
(A) 30°
(B) 45°
(C) 90°
(D) 180°

Ans: A

Q41. The plane of polarisation of a plane polarised light rotates by 60° after passing through a wave plate. The pass axis of the wave plate is at an angle α with respect to the plane of polarisation of the incident light. The wave plate and α are
(A) $\lambda / 4,60^{\circ}$
(B) $\lambda / 2, \quad 30^{\circ}$
(C) $\lambda / 2,120^{\circ}$
(D) $\lambda / 4,30^{\circ}$

Ans: C
Q42.An object of density ρ is floating in a liquid with 75% of its volume submerged. The density of the liquid is
(A) $\frac{4}{3} \rho$
(B) $\frac{3}{2} \rho$
(C) $\frac{8}{5} \rho$
(D) 2ρ

Ans: A

Q43. The moment of inertia of a solid sphere (radius R mass M) about the axis which is at a distance of $R / 2$ from the centre is
(A) $\frac{3}{20} M R^{2}$
(B) $\frac{1}{2} M R^{2}$
(C) $\frac{13}{20} M R^{2}$
(D) $\frac{9}{10} M R^{2}$

Ans: C

Q44. Metallic lithium has bcc crystal structure. each unit cell is a cube of side a. the number of atoms per unit volume is
(A) $\frac{1}{a^{3}}$
(B) $\frac{2}{\sqrt{2} a^{3}}$
(C) $\frac{2}{a^{3}}$
(D) $\frac{4}{a^{3}}$
(D) 0

Ans: B

Q45. A plane in a cubic lattice makes intercepts of $a, a / 2$ and $2 a / 3$ with the three crystographic axes respectively. the miller indices for this plane are
(A) (243)
(B) (3 42)
(C)(6 34)
(D) (123)

Ans: C

Q46.Thermal runway in a transistor biased in the active region is due to
(A) Change in reverse collector saturation current due to rise in temperature.
(B)Breakdown under reverse biasing.
(C) Change in β which increases with temperature.
(D) Base emitter voltage $V_{B E}$ which decreases with rise in temperature.

Ans: A
Q47.The Boolean expression $(A+B)(A+\bar{B})(\bar{A}+B)$ is equivalent to
(A) $A \bar{B}$
(B) $\bar{A} B$
(C) $\bar{A} \bar{B}$
(D) $A B$

Ans: D

Q48. For the given circuit, the output Y is
(A) 0
(B) 1
(C) A
(D) \bar{A}

Ans: D

Q49. Let T_{g} and T_{e} be the kinetic energies of the electron in the ground and the third excited states of a hydrogen atom, respectively. According to the Bohr model, the ratio T_{g} / T_{e}
(A) 3
(B) 4
(C) 9
(D) 16

Ans: D
Q50.The Hamiltonian of a particle in one dimension is given by $H(x, p)=\frac{p^{2}}{2 m}+\lambda p x+\frac{\lambda}{2} x^{2}$ where m and λ are constant. the corresponding Lagrangian is
(A) $L=\frac{m}{2}(\dot{x})^{2}-\lambda m x \dot{x}-\frac{\lambda}{2} x^{2}$
(B) $L=\frac{m}{2}(\dot{x}-\lambda x)^{2}-\lambda m x \dot{x}-\frac{\lambda}{2} x^{2}$
(C) $L=\frac{m}{2}(\dot{x}-\lambda x)^{2}-\frac{\lambda}{2} x^{2}$
(D) $L=\frac{m}{2}(\dot{x})^{2}-\frac{\lambda}{2} x^{2}$

Ans: C

